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Abstract—The existing rubber tyred gantry (RTG) mainly 

adopts methods such as traditional laser, magnetic nail or 

other technologies to orient. In view of the shortcomings of the 

technology, such as single use scenario, limited information 

and high construction cost, a visual automatic alignment 

system based on Mask-RCNN is proposed to accomplish the 

integration of perception and decision-making. The system 

based on ROS (Robot Operating System) is mainly composed 

of target detection and segmentation module, motion decision 

module and visual human- machine interaction interface. The 

target detection and segmentation module is mainly used to 

perceive the target, including its foreground segmentation 

module based on Mask-RCNN and the target orientation 

module based on traditional image algorithm; The motion 

decision module is mainly used to control the movement of the 

tire crane, including motion modeling module and logic control 

module; The visual human-computer interaction interface is 

mainly used to adjust system parameters and monitor system 

operation status, including the back-end used for providing 

data and the front-end used for data interaction. Finally, the 

designed visual automatic alignment system has been tested on 

the tire crane, and the orientation accuracy and operation 

efficiency have been improved enormously. 
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Mask-RCNN 

I.  INTRODUCTION 

Rubber tyred gantry (RTG) is a common port machinery 
and equipment, which is widely used in ports around the 
world due to its low requirements on the operation site [1]. 
Perceptual positioning is one of the keys to the automation of 
RTG. For a long time, RTG mainly use traditional laser, 
magnetic nail and other technologies to achieve positioning. 
The advantages of this technology are simple and reliable, 
but the disadvantages are that the use scene is single, the 
information provided is limited, and the construction cost is 
high. 

In recent years, the transformation to intelligent port has 
become an inevitable trend in the industry, and it is difficult 
to adapt to the current development needs only by using 
traditional technologies. Under the research of global 
scholars, the perception technology of using convolutional 
neural network [2-5] to extract image features has become 
the mainstream. Image processing technology based on deep 
learning has the advantages of low sensor requirements, rich 
perceptual information, and effectively reducing production 
costs, which makes the technology gradually become a new 
solution. 

Mainstream perception models can be divided into two 
categories: single-stage object detection and two-stage object 
detection. Single-stage target detection is directly from the 
image to the target, such as YOLO[6-8], SSD[9], 
RetinaNet[10], etc., which are characterized by high speed 
and low accuracy. Two-stage target detection needs to be 
performed in two steps. First, the candidate region is 
obtained, and then the target in the candidate region is 
classified and regressed, such as the R-CNN series [11-14], 
which is characterized by high accuracy and slow speed. 
RTG belongs to heavy machinery, which usually needs to lift 
dozens of tons of goods. Ensuring its safety is the primary 
priority. Therefore, in the selection of the baseline of 
perception algorithm research, this article chooses the two-
stage target detection algorithm with higher accuracy, and 
selects the detection and segmentation algorithm based on 
Mask-RCNN [14] to achieve the localization and 
classification of targets. 

Another key to realizing port machinery automation is 
motion decision-making. At present, position-based visual 
control is widely used at home and abroad [15]. In the 3D 
Cartesian coordinate system, the camera calibration and 
coordinate transformation are used to obtain the position of 
the measured object in the Cartesian space, and form a 
deviation from the desired position. Then, according to the 
deviation, the control algorithm is designed to control the 
motion of the mechanism. This method has the following 
disadvantages: 1) No matter how the camera is calibrated, 
the coordinate conversion will bring certain errors; 2) The 
port machinery is a heavy machinery, and the machine will 
be deformed when hoisting dozens of tons of goods, which 
will also bring errors to the coordinate conversion. Due to 
the existence of errors, the parameters of the port machinery 
need to be adjusted frequently. Therefore, a large number of 
debugging personnel have to be deployed on the operation 
site to adjust the parameters, which increases the operation 
and maintenance cost. Aiming at this problem, this article 
proposes a novel motion modeling scheme. 

II. SYSTEM OVERVIEW 

RTG is a crane used for container hoisting, and its main 
structure consists of three parts: gantry, trolley and spreader, 
as shown in Figure 2. Among them, the gantry is equipped 
with tires, which can move in the direction of each row of 
containers; the trolley moves in the direction of each row of 
containers; the spreader is connected to the trolley frame 
with steel wire ropes. Through the movement of gantrys and 
trolleys, the spreader can lift containers in any position in the 



yard. At the same time, the spreader has the micro-
movement function along the direction of the gantry, the 
direction of the trolley and the rotation, which is convenient 

for the micro-motion adjustment of the spreader during the 
alignment operation. 
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            a）physical map                                                                   b）schematic diagram 

Figure 1.RTG Structure  

During the operation of RTG, the automatic control 
system needs to complete the alignment operation, such as 
the spreader and the container (grab the container, as shown 
in Figure 2a)), the container and the container (stacked 
containers, as shown in Figure 2b)), Containers and trucks 

(loading, as shown in Figure 2c)), containers and container 
corner lines (hoisting the first layer of containers in the yard, 
this action is called bottom container stacking, as shown in 
Figure 2d) alignment work. 

 
                   a) grasping                                              b) stacking                                         c) loading                                      d) bottom container stacking 

Figure 2. Schematic Diagram Of Alignment Operation 
This article will take the bottom container stacking operation 

as an example to introduce the designed automatic visual 
alignment system for RTG, which is mainly composed of object 
detection and segmentation module, motion decision module and 
visual human- machine interaction interface, as shown in Figure 
3. The target detection and segmentation module is mainly used 
to obtain the position of the target in the image. First, the target 
image is obtained through the image acquisition module, and 
then Mask-RCNN segments the foreground image of the target. 
Finally, the target positioning module performs post-processing 
on the foreground image and outputs the position of the target in 
the image. The motion decision module receives the result output 
by the target detection and segmentation module, and outputs the 
control instructions required by the tire crane control system. 
Firstly, the motion modeling of the tire crane alignment operation 
is carried out, then the deviation is calculated according to the 
motion model and the position of the operation target in the 

image, and finally the logic control command is output according 
to the operation process of the bottom container stacking. Both 
the target detection and segmentation module and the motion 
decision module are adjusted through the web human-computer 
interface. 
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Figure 3. System Overall Block Diagram 



III. OBJECT DETECTION AND SEGMENTATION MODULE 

A. Image Acquisition Module 

Four cameras are installed independently on the four 
corners of the spreader to collect the image of the operation 
target (for the bottom container stacking operation, the 
operation target is the container angle line), as shown in 
Figure 4a). The camera shooting angle is shown in Figure 
4b). Since the four cameras work independently, in order to 
ensure that the four cameras capture images synchronously, 

the soft synchronization method is adopted in this article. 
The specific methods are as follows: 

1) The four cameras capture images at a fixed frame rate 
with time stamps, and the collected images are stored in; 

2) Take one of the cameras as the benchmark to obtain 
the latest image in its buffer; 

3) In the buffers of the other three cameras, select the 
image with the closest time to the image; 

4) These four images are selected as a batch, which is 
used as the input of the neural network. 
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a) installation diagram of spreader camera                                        b) schematic diagram of the four-camera shooting angle 

Figure 4. Installation Diagram Of Spreader Camera 

B. Task Target Foreground Segmentation Module Based 

On Mask-RCNN 

（1）Mask-RCNN Perception Model  

In this article, the detection and segmentation algorithm 
of Mask-RCNN [14] is used to realize the foreground 
segmentation of container corner lines. Target detection is to 
locate the target with a rectangular frame, and its position in 
the image is determined by only two points (the top left 
point and the bottom right point), and the target 
segmentation is to divide different targets from the 
perspective of pixels. A mask to identify an object whose 
position in the image is determined by a set of points (ie, the 
coordinates of each pixel). Using object detection to locate 
objects in a continuous image sequence has a disadvantage: 
the detection container will shake. The jitter of the detection 
signal is not conducive to the alignment control of the tire 
crane. Compared with object detection by two points, object 
segmentation by a group of points is more stable. 

The Mask-RCNN network is a two-stage object 
detection and segmentation network. The first stage extracts 
image features and generates proposals, and the second 
stage classifies proposals and generates bounding containers 
and masks. It mainly consists of the following three parts: 

1) Backbone. In this article, the residual network 
(Resnet50) is used to extract features from the image, and 
then the Feature Pyramid Network (FPN) is used for multi-
scale feature fusion; 

2) Region Proposal Network (RPN). The network 
structure is similar to the RPN in Faster-RCNN, the only 
difference is that the input is the output of the FPN. The 
network judges the positive and negative samples of each 
anchor feature and roughly locates it; 

3) Region of Interest Align (RoI Align). Compared with 
RoI Pooling, RoI Align uses the bilinear interpolation 
method to calculate the value of each feature point, which 
realizes the continuity of the feature aggregation process. 
Pixel position shift is avoided when performing Mask 
regression. 

（2）Data Set 

The training data set adopts the MS-COCO data set and 
the container angle data set collected for the bottom-opening 
operation. MS-COCO (Common Objects in COntext) is one 
of the most commonly used datasets in the field of computer 
vision [16]. It has 80 categories and more than 200,000 
annotated images, which can be used for research such as 
object detection, segmentation and semantic understanding. 
In this article, the MS-COCO data set is used to pre-train the 
perception model, so that the convolutional neural network 
has a certain awareness of the target, and then the container 
angle data set is used to fine-tune the perception model to 
improve the recognition and positioning accuracy. 

The container corner line data set is mainly composed of 
two parts: 1) The corner line image data collected from 
multiple ports. This data set is used as a general detection 
and segmentation data set for corner line objects, with a 
total of 10,838 images, of which 9,758 are training sets, the 
validation set is 1080; 2) In the port scene of the actual 
bottom container stacking operation, the corner line image 
data during the bottom container stacking operation are 
collected in a targeted manner. There are 6028 images in 
total, including 5004 images in the training set and 1024 
images in the validation set. When marking, all container 
corner lines appearing in the figure should be marked, no 
matter whether it is blocked or not, as shown in Figure 5. 



 
a) original image                                b) annotated image 

Figure 5. Example of Container Corner Line Data Set Annotation 

（3）Training 

During training, we keep the hyperparameters in Mask-
RCNN unchanged. The difference from the original text is 
that in this article, in order to improve the real-time 
performance of the model, the resolution of the input image 
is scaled to 640×640. 

Initialization: For the backbone of Mask-RCNN, 
ImageNet1k pretrained weights are used for initialization 
[17]. For both one-stage and two-stage classification and 
regression networks, weights with bias b = 0 and Gaussian 
variance σ = 0.01 are used as initialization. 

Optimizer: This article uses a Stochastic Gradient 
Descent (SGD) optimizer to train the entire network, where 
the momentum is set to 0.9 and the weight decay is set to 
0.0001. During the training process, the batch size is set to 
4, and it is evenly distributed to two 2080 Ti graphics cards. 
The initial learning rate is set to 0.001, and as training 
progresses, the learning rate is divided by 10 at the 4K, 6K, 
and 8K iterations to achieve a dynamic decrease in the 
learning rate. The training process is iterated 10K times in 
total. During training, only horizontal flips of images are 
employed to augment the dataset. (Note: The above training 
process is pre-training with MS-COCO. During the fine-
tuning stage, the learning rate is set to 0.0001 throughout, 
and the rest remain unchanged). 

（4）Experimental Results 

On the container corner target general detection 
segmentation dataset, the AP accuracy reaches 96.04%, and 
on the fine-tuning dataset for the actual open bottom 
condition, the AP accuracy reaches 99.49%. The 
experimental results are shown in Figure 6. 

 
Figure 6. Container Corner Detection And Segmentation Results 

C. Target Positioning Module 

The target foreground segmentation module based on 
Mask-RCNN only outputs the segmentation result, and does 
not output the position of the expected target in the image. 
In this article, the traditional image processing method is 

used to analyze the perception results, and output the precise 
position of the target in the image. 

（1）Acquisition of container corner foreground image 

Save the container line mask obtained by the target 
foreground segmentation module to the same image and 
perform binarization processing to obtain the corner line 
foreground image, as shown in Figure 7. 

 
a) corner line mask map                     b) corner line foreground binary map 

Figure 7. Binary Image Of Corner Line Foreground 

（2）Canny edge detection 

Firstly, perform morphological processing on the 
obtained corner line foreground binary image, the specific 
performance is as follows:  

1) perform an erosion operation to remove some small 
noise spots;  

2) perform an expansion operation to connect the 
adjacent areas to enhance the corner line completeness. 

Finally, canny edge detection is performed on the 
preprocessed foreground image, and the minimum bounding 
rectangle of the contour is obtained, as shown in Figure 8. 

 
Figure 8. Canny Edge Detection Result 

（3）Anchor Point Selection 

The bottom container stacking operation requires that 
the container be hoisted into the area marked by the 
container corner line. Through observation, it is found that 
when the bottom container stacking meets the requirements, 
the container will not block the corners of the container 
corners. Therefore, in this article, the corner point of the 
corner line will be the positioning point during the container 
alignment operation, as shown by the light yellow point in 
Figure 9. 

 
Figure 9. Anchor Points 



（4）Extraction of Standard Container Corner Positioning 

Points 

In the process of bottom container stacking alignment 
operation, the positioning point extraction faces the 
following problems: 1) The container will inevitably block 
the corner line of the container, resulting in the 
disappearance of the corner point, as shown in Figure 10; 2) 
2) Although the performance of the neural network is 
excellent, the perception results are still uncertain due to the 
existence of interference factors (illumination intensity, 
electromagnetic interference, etc.) and the "black box" 
attribute of the neural network, resulting in false detection 
(as shown in Figure 11). Even if the probability of false 
detection is very low, in order to improve the reliability of 
the system, this situation cannot be ignored; 3) There will be 
multiple container corners appearing in the camera's field of 
view, and the canny edge detection algorithm will detect the 
outline of each container corner (as shown in Figure 8). At 
this time, it is necessary to filter out the desired container 
corner. Aiming at these problems, this article proposes a 
standard container angle positioning point extraction 
algorithm. 
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Figure 11. Legend of Container Corner False Detection 

1) For questions 1 and 2 
Each contour detected by canny is analyzed, and only 

standard container corners are filtered out, as shown in 
Figure 12. For the standard container corner line, this article 
gives three criteria: the aspect ratio of the container corner 
line (that is, the aspect ratio of the minimum bounding 
rectangle of the container corner line), the opening direction 
of the container corner line and the shape of the container 
corner line (L-type or F-type). Only if these three criteria are 
met at the same time, it will be judged as a standard 
container angle. 
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Figure 12. Standard and Non-standard Container Plot Legends 

For the top-left, top-right, bottom-left, and bottom-right 
cameras, it is expected that the opening directions of the 
container corner lines are bottom-right, bottom-left, top-
right, and top-left, respectively. According to the standard 
container corner line judgment conditions, the container 
corner line is judged and the positioning point is extracted 
(Note: Only the standard container corner line can be used 
for positioning point extraction), as shown in figure 13. 

 
a) original perception result map                b) anchor point extraction map 

Figure 13. The Extraction Legend of The Standard Container Corner Line 

Positioning Point (Note: the positioning point is marked with a light yellow 

point, the container corner line that meets the judgment standard is marked 

with a red rectangle, otherwise it is marked with a blue rectangle.) 

Since only the standard container corners are extracted 
for positioning points, the problems of occlusion and false 
detection can be effectively solved. The stricter the standard 
container angle determination standard is set, the lower the 
false detection rate, but the higher the missed detection rate. 
A positioning point extraction algorithm with balanced 
performance can be obtained by adjusting the threshold 
value of the judgment standard. 

If the camera from one or several perspectives fails to 
identify the positioning point, the posture of the container 
relative to the container angle can be inferred based on the 
perception results of other cameras. For the specific method, 
see Section 4.2. 

2) For question 3 
When the spreader lifts the container, the spreader and 

the container, and the spreader and the camera are rigidly 
connected, so the relative position of the camera and the 
container will not change. In other words, the position of the 
container on the camera frame is fixed. When the container 
is aligned with the container corner line, it is necessary to 
obtain the position of the container corner line and the 
container. The position of the container corner line is the 
positioning point, and for the position of the container, since 
the position of the container on the camera screen is fixed, a 
point can be directly marked on the image as the position of 
the container. After analysis, this article uses the four 
corners of the container as the calibration points of the 
container position, as shown by the yellow points in Figure 
14. 



 

Figure 14. Container Position Calibration Points 

Before the bottom container stacking operation, the 
crane control system will drive the tire crane to move above 
the corresponding container angle line, as shown in Figure 
14. In Figure 14, multiple standard container corners will 
appear in the same camera screen, as shown by the red 
container in Figure 15.  

 
Figure 15. Multiple Standard Container Corner Lines Appear in The 

Unified Camera Screen (Note: the above picture is a stitched image of 4 

cameras) 
Each standard container corner line can extract the 

positioning point. By calculating the distance between each 
positioning point and the calibration point, the positioning 
point with the smallest distance from the calibration point is 
used as the desired positioning point. The final positioning 
point detection result is shown in Figure 16. The small light 
yellow point in the figure is the desired positioning point, 
and the large yellow point is the calibration point. 

 
Figure 16. Expected Location Point Detection Result 

The target detection and segmentation module proposed 
in this article adopts the method of combining deep learning 
and traditional image processing, which greatly improves 
the accuracy and reliability of the model, and successfully 
applies vision to the port open production environment. 

IV. MOTION DECISION MODULE 

After obtaining the position of the container corner line 
and the container in each camera image, it is necessary to 
carry out motion modeling according to the geometric 
relationship between them and the mechanical structure, and 
generate the deviation along the gantry, trolley and rotation 
direction. Finally, according to the operation process of the 
RTG, the final logic control signal is output. 

A. Motion Modeling Module 

（1）Analysis of bottom container stacking motion 

If the installation height of the cameras and the focal 
length of the lenses are the same, and the center points of the 
cmos target surfaces of each camera are aligned horizontally 
and vertically, and the sides of the cmos target surfaces are 
parallel, the image stitched by the four cameras can be 
regarded as an image captured by one camera. In this ideal 
case, the pixel plane coordinate system can be used directly, 
as shown in Figure 17. Among them, the origin of the 
coordinates is the top left point of the image, the x direction 
is the direction of the cart's movement, and the y direction is 
the direction of the car's movement. 

 
Figure 17. Schematic Diagram of The Ideal Installation Position of The 

Camera (the four-camera mosaic image is in the red area; the black 

rectangle in the image is the container; the L-shaped sign is the container 

corner line) 
In Figure 17, Pctl，Pctr，Pcbl，Pcbr are the container 

corner line positioning points, and Pbtl，Pbtr，Pbbl，Pbbr 

are the container position calibration points. Pbc is the 
center point of the container, and Pcc is the center point of 
the container corner line positioning area. 

During the alignment operation, the calculation formula 
for the direction deviation err_x of the cart and the direction 
deviation err_y of the trolley is as follows: 

{
𝑒𝑟𝑟_𝑥 = 𝑃𝑏𝑐_𝑥 − 𝑃𝑐𝑐_𝑥
𝑒𝑟𝑟_𝑦 = 𝑃𝑏𝑐_𝑦 − 𝑃𝑐𝑐_𝑦

                     （1） 

The formulas for calculating the coordinates of point 
Pbc and point Pcc in the x and y directions respectively are 
as follows: 



{
 
 

 
 𝑃𝑏c_x =

𝑃𝑏𝑡𝑙_𝑥+𝑃𝑏𝑡𝑟_𝑥+𝑃𝑏𝑏𝑙_𝑥+𝑃𝑏𝑏𝑟_𝑥

4

𝑃𝑏𝑐_𝑦 =
𝑃𝑏𝑡𝑙_𝑦+𝑃𝑏𝑡𝑟_𝑦+𝑃𝑏𝑏𝑙_𝑦+𝑃𝑏𝑏𝑟_𝑦

4

𝑃𝑐𝑐_𝑥 =
𝑃𝑐𝑡𝑙_𝑥+𝑃𝑐𝑡𝑟_𝑥+𝑃𝑐𝑏𝑙_𝑥+𝑃𝑐𝑏𝑟_𝑥

4

𝑃𝑐𝑐_𝑦 =
𝑃𝑐𝑡𝑙_𝑦+𝑃𝑐𝑡𝑟_𝑦+𝑃𝑐𝑏𝑙_𝑦+𝑃𝑐𝑏𝑟_𝑦

4

             （2） 

Substituting formula (2) into formula (1), we get: 
 

{
𝑒𝑟𝑟_𝑥 =

(𝑃𝑏𝑡𝑙_𝑥−𝑃𝑐𝑡𝑙_𝑥)+(𝑃𝑏𝑡𝑟_𝑥−𝑃𝑐𝑡𝑟_𝑥)+(𝑃𝑏𝑏𝑙_𝑥−𝑃𝑐𝑏𝑙_𝑥)+(𝑃𝑏𝑏𝑟_𝑥−𝑃𝑐𝑏𝑟_𝑥)

4

𝑒𝑟𝑟_𝑦 =
(𝑃𝑏𝑡𝑙_𝑦−𝑃𝑐𝑡𝑙_𝑦)+(𝑃𝑏𝑡𝑟_𝑦−𝑃𝑐𝑡𝑟_𝑦)+(𝑃𝑏𝑏𝑙_𝑦−𝑃𝑐𝑏𝑙_𝑦)+(𝑃𝑏𝑏𝑟_𝑦−𝑃𝑐𝑏𝑟_𝑦)

4

                                            （3） 

 
In the four cameras, the calculation formula for the 

displacement of the calibration point and the positioning 
point in the x and y directions (see Figure 17 for details) is 
as follows: 

{
 
 
 

 
 
 
𝑃𝑒𝑡𝑙_𝑥 = 𝑃𝑏𝑡𝑙_𝑥 − 𝑃𝑐𝑡𝑙_𝑥
𝑃𝑒𝑡𝑙_𝑦 = 𝑃𝑏𝑡𝑙_𝑦 − 𝑃𝑐𝑡𝑙_𝑦
𝑃𝑒𝑡𝑟_𝑥 = 𝑃𝑏𝑡𝑟_𝑥 − 𝑃𝑐𝑡𝑟_𝑥
𝑃𝑒𝑡𝑟_𝑦 = 𝑃𝑏𝑡𝑟_𝑦 − 𝑃𝑐𝑡𝑟_𝑦
𝑃𝑒𝑏𝑙_𝑥 = 𝑃𝑏𝑏𝑙_𝑥 − 𝑃𝑐𝑏𝑙_𝑥
𝑃𝑒𝑏𝑙_𝑦 = 𝑃𝑏𝑏𝑙_𝑦 − 𝑃𝑐𝑏𝑙_𝑦
𝑃𝑒𝑏𝑟_𝑥 = 𝑃𝑏𝑏𝑟_𝑥 − 𝑃𝑐𝑏𝑟_𝑥
𝑃𝑒𝑏𝑟_𝑦 = 𝑃𝑏𝑏𝑟_𝑦 − 𝑃𝑐𝑏𝑟_𝑦

             （4） 

Substituting formula (4) into formula (3), we get: 

{
𝑒𝑟𝑟_𝑥 =

𝑃𝑒𝑡𝑙_𝑥+𝑃𝑒𝑡𝑟_𝑥+𝑃𝑒𝑏𝑙_𝑥+𝑃𝑒𝑏𝑟_𝑥

4

𝑒𝑟𝑟_𝑦 =
𝑃𝑒𝑡𝑙_𝑦+𝑃𝑒𝑡𝑟_𝑦+𝑃𝑒𝑏𝑙_𝑦+𝑃𝑒𝑏𝑟_𝑦

4

        （5） 

It can be seen from formula (5) that err_x and err_y are 
the average displacements of the calibration point and the 
positioning point in the x and y directions in the four 
cameras. 

During the alignment operation, the angle between the 

line segment（Pbbl, Pbtr）and the line segment（Pcbl, 

Pctr）can be calculated for the rotation deviation. However, 

it is found in practical applications that it can be measured 
by the difference in displacement between the calibration 
point and the positioning point on the same side in the x or y 
direction. For example, the difference between the 
displacements of the top left and top right cameras in the y 
direction is selected as the rotation deviation, and the 
formula is as follows: 

𝑒𝑟𝑟_𝜃 =  𝑃𝑒𝑡𝑙_𝑦 − 𝑃𝑒𝑡𝑟_𝑦                  （6） 

（2）Multi-camera fusion positioning coordinate system 

The above is the calculation of the deviation of the 
camera in the ideal installation state. However, in practice, it 
is difficult to install the camera in place. Even if the camera 
is installed in place, the installation position of the camera 
will be shifted due to vibration with the cycle operation of 
the tire crane, as shown in Figure 18. In this case, the pixel 
plane coordinate system is no longer applicable. 

In response to this problem, this article proposes a multi-
camera fusion positioning coordinate system, with the vertex 
of the container line (the red point in the figure) as the origin, 
and the two sides of the container line as the x-axis and y-

axis, as shown in Figure 18. The reasons why the coordinate 
system can be constructed in this way: 1) No matter how the 
camera is installed, the relative positional relationship 
between the container and the container corner line in each 
camera image will not change with the installation angle of 
the camera; It looks like the container and the corner line of 
the container have been deformed, but it is not. Therefore, 
formulas (5) and (6) can still be used for the calculation 
formulas of the gantry direction deviation err_x, the trolley 
direction deviation err_y and the rotation deviation err_θ, but 
they should be calculated in the multi-camera fusion 
positioning coordinate system. 

 
Figure 18. Four-camera Composite Image of Non-ideal Camera Installation 

Position 

B. Logic Control Module 

（1）Logic control under occlusion state 

During the tire crane alignment operation, the logic 
control strategy of the spreader's micro-movement is as 
follows:  

1) rotate the spreader until the movement is in place;  
2) Move the trolley in the direction until the movement 

is in place;  
3) Finally carry out the direction movement of the gantry 

until the movement is in place. 
According to the logic control strategy and the 

calculated deviation, the bottom container stacking 
operation can be carried out. However, during the bottom 
container stacking operation, the container may block the 
corner line of the container, so that the positioning point 
cannot be detected. In this case, the positional relationship 
between the container and the corner line of the container 



can be inferred based on the recognition of the remaining 
cameras. The specific strategy is as follows: 

1) Unobstructed. In this state, the calculation formulas of 
err_x, err_y and err_θ are the same as formulas (5) and (6). 

2) Only block one container corner line. When only one 
container line is occluded and the positioning point cannot 
be identified, it can be calculated based on the positioning 
points in the other three cameras. Take the top right 
container corner line being blocked as an example, as shown 
in Figure 19. 

 
Figure 19. The Top Right Container Corner Line Blocked 

The calculation formulas of err_x and err_y are as follows: 

 

{
𝑒𝑟𝑟_𝑥 =

𝑃𝑒𝑡𝑙_𝑥+𝑃𝑒𝑏𝑙_𝑥

4
+

+𝑃𝑒𝑏𝑟_𝑥

2

𝑒𝑟𝑟_𝑦 =
𝑃𝑒𝑡𝑙_𝑦+𝑃𝑒𝑏𝑙_𝑦

4
+

+𝑃𝑒𝑏𝑟_𝑦

2

           （7） 

 

The calculation formula of err_θ is as follows: 

 

𝑒𝑟𝑟_𝜃 =  𝑃𝑒𝑏𝑙_𝑦 − 𝑃𝑒𝑏𝑟_𝑦            （8） 

 
The calculation method for the remaining three cases is 

similar. 
3) Only cover two container corner lines 
Limited by the geometric relationship between the 

container and the container corner line, if two container 
corners are blocked at the same time, the blocked container 
corners must be on the same side, as shown in Figure 20. 

 
Figure 20. Blocking Two Container Corner Lines at The Same Time 

Taking the simultaneous occlusion of the two top 
container corner lines as an example (that is, the top left of 
Figure 20), the calculation formula of err_θ is the same as 
formula (8). The calculation formula of err_x is as follows: 

 

𝑒𝑟𝑟_𝑥 =
𝑃𝑒𝑏𝑙_𝑥+𝑃𝑒𝑏𝑟_𝑥

2
                     （9） 

 

Since the two positioning points on the same side cannot 
be identified, the deviation err_y of the trolley direction 
cannot be accurately calculated, but the movement direction 
of the trolley direction can be deduced based on the 
recognition of the four cameras. In this case, set another step 
You can control the trolley to move in the correct direction. 
As the motion progresses, the occlusion disappears, after 
which it can be calculated precisely according to equation 
(5) or (7). 

4) Block three or four container corner lines 
Due to the geometric relationship between the container 

and the corner line, this situation does not occur. If this 
happens, it can be considered that the foreground 
segmentation module recognizes an error, and at this time, it 
will jump from automatic control to remote manual 
operation. 

（2）Control rate design 

The dimensions of err_x, err_y and err_θ calculated 
above are all pixels, which are not the position, speed, etc. 
required for actual control. How to apply these deviations to 
the tire crane control system also needs to be designed for 
the control rate. During the alignment operation, the hoisted 
cargo weighs dozens of tons, which belongs to the heavy-
duty low-speed system. The control logic of the existing 
manual operation is as follows:  

1) The driver judges the movement direction of the 
spreader at the next moment by observing the relative 
positional relationship between the current container and the 
container corner line;  

2) Operates the corresponding handle, gives the switch 
value, and controls the tire crane. Perform alignment work.  

3) Repeat steps 1) and 2) until the accuracy requirements 
are met. 

The design of the control rate in this article simulates 
manual work. For the three control variables of err_x, err_y, 
and err_θ, a fixed step size is set: step_x, step_y, step_θ, and 
the control rate formula is as follows: 

 

𝑒𝑟𝑟_𝑥 = {
𝑠𝑡𝑒𝑝_𝑥, 𝑒𝑟𝑟_𝑥 > 0
0, 𝑒𝑟𝑟_𝑥 = 0

−𝑠𝑡𝑒𝑝_𝑥, 𝑒𝑟𝑟_𝑥 < 0
          （10） 

𝑒𝑟𝑟_𝑦 = {

𝑠𝑡𝑒𝑝_𝑦, 𝑒𝑟𝑟_𝑦 > 0
0, 𝑒𝑟𝑟_𝑦 = 0

−𝑠𝑡𝑒𝑝_𝑦, 𝑒𝑟𝑟_𝑦 < 0
         （11） 

𝑒𝑟𝑟_𝜃 = {

𝑠𝑡𝑒𝑝_𝜃, 𝑒𝑟𝑟_𝜃 > 0
0, 𝑒𝑟𝑟_𝑦 = 0

−𝑠𝑡𝑒𝑝_𝜃, 𝑒𝑟𝑟_𝜃 < 0
        （12） 

C. Experimentation 

（1）Multi-camera fusion positioning coordinate system 

The logic control module is used to make motion 
decisions for each frame of images during bottom container 
stacking operations. For the decision-making results, this 
article adopts the manual verification method. Finally, 
Finally, the decision accuracy reached 99.9% in 4000 
frames. Some experimental results are shown in Figure 21. 



 
Figure 21. Decision Result Diagram of Logic Control Mode (Note: The 

arrow in the picture represents the direction of the tire crane's movement at 
the next moment) 

（2）Motion control experiment 

According to the designed control rate, the motion 
control curves of the tire suspension along the gantry, trolley, 
and rotation directions are shown in a), b), and c) in Figure 
22. 

 
a) motion control curve in the direction of the gantry 

 
b) motion control curve in the direction of the trolley 

 
c) rotation direction motion control curve 

Figure 22. Bottom Container Stacking Motion Control Curve 

V. HUMAN MACHINE INTERFACE 

In this project, the Human Machine Interface is 
developed by HTML webpage, as shown in Figure 23. 

 
Figure 23. Human Machine Interface 

The debugging personnel only need to open the browser 
and enter the corresponding URL to log in to the human 
machine interaction interface. The key parameters are 
provided in the interface to facilitate the debugging 
personnel to adjust the parameters of different tire cranes, so 
as to ensure the normal operation of the crane visual 
automatic alignment system. 

VI. CONCLUSION 

Aiming at the problem of automatic alignment control of 
RTG, a novel visual automatic alignment system is 
proposed, which realizes the integration of perception and 
motion decision-making. Firstly, a target detection and 
segmentation module is designed to perceive and locate the 
target, which fully combines the powerful perception ability 
of neural network with the interpretability of traditional 
image algorithms, greatly improves the accuracy and 
reliability of the model. Then a motion decision module is 
designed to convert the perception and positioning results 
into control signals, which greatly simplifies the camera 
calibration process and realizes the integration of visual 
positioning and alignment control. Finally, an html-based 
human-computer interface is developed for the system, 
which can be used by the debuggers to adjust the system 
parameters and monitor the system running status. The 
experimental results show that the decision-making accuracy 
of the visual automatic alignment system designed in this 
article is as high as 99.9%. The practical application results 
show that the operation efficiency is greatly improved and 
the failure rate is low. 

The visual automatic alignment system for RTG 
proposed in this article is the first time to apply the deep 
learning-based visual technology to the industrial control in 
the port environment, but the design of the control rate is 
relatively simple. In subsequent research, the design of the 
control rate can be further explored in the direction of 
reinforcement learning to further improve the operating 
efficiency of the system. 
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